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ABSTRACT

This paper proposes a profile of state contingent claims, embedded in a stochastic interest rate process, for
the surplus management of an insurance company as an optimal asset allocation strategy. Proper positions of
securities based on interest rate situations can be arranged by a surplus manager to fulfill the liability schedule
under the pre-specified solvency ability. By considering each path immunization, this asset allocation modeling
could be carried into the “multi-period scenarios-based programming model”. Hence, we develop the strategy to
implement the concept of path-immunization for the insurance company. Furthermore, we illustrate the impact
of the change of the market current term/volatility structure of asset/liability return on the surplus value, a way
how to reallocate assets and a hedging strategy for this insurance company in the market with all the state

contingent claims needed.
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|. INTRODUCTION

Fluctuations of the surplus value, equal to the asset value minus the liability
value, have been studied since 1952. Considering especially with the interest rate
risk, Redington (1952) linked the surplus management with the immunization
strategy via Taylor’s expansion. He demonstrated that ignoring higher order terms,
first-order zero sensitivity with respect to the market current interest rate level and
second-order positive one cause positive changes of the surplus value while the
market current interest rate level deviates. The concept of immunization here is that:
the surplus value increases regardless of the courses of interest rate movements
(Fisher and Weil, 1971; Bierwag, 1977; Bierwag and Kaufamn, 1977). Other
related researches further recognized and introduced the specified stochastic
interest rate process to investigate the immunization strategy of an insurance
company. Boyle (1978) introduced the bond portfolio immunization under a
stochastic interest rate process while early studies focused only on a single bond
immunization with a deterministic interest rate function. Tzeng, Wang and Soo
(2000) adopted an optimization framework to seek a profile of multi-period
immunization strategy which fulfills the liability schedule under the pre-specified
solvency ability. However, the stochastic interest rate process mentioned above so
far, in effect, determines the proper discount factors for different time periods.
They did not recognize the fact that the interest rate with different values at
different times is truly a dynamic process. Chiu and Lee (2007), filling up this gap,
allocated the different amount of asset on the different interest rate path, so called
the “multi-period scenarios-based strategy”, to capture a truly dynamic property of
interest rate process. Along with this line of research, this paper proposes
alternative approach to capture this important property via a profile of state
contingent claims. Hence, the derivatives-based hedging strategy of an insurance
company is suggested, even when the economic environment changes (e.g., the

market current term/volatility structure of asset/liability return changes).

In general, driving forces of uncertainty are described by stochastic interest
rate models. One paradigm of stochastic interest rate models is that of no arbitrage
model (Ho and Lee, 1986; Black, Derman, and Toy, 1990; Black and Karasinski,
1991; Hull and White, 1990) which utilizes the full information of the market

current term/volatility structure, and the other one is that of equilibrium model
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(Vasicek, 1977; Cox, Ingersoll, and Ross, 1985) which usually requires the
estimation of the market price of risk, and is not well adapted to the market current
term/volatility structure. The others deal with different underlying markets, such as
the forward rate market (Heath, Jarrow, and Morton, 1992) and the swap rate
market (Brace, Gatarek, and Musiela, 1997). Due to the importance of the market
current term/volatility structure, this paper focuses only on that of no arbitrage
model. Formally, this paper considers a profile of state contingent claims,
embedded in a no-arbitrage stochastic interest rate process, for the surplus
management of an insurance company to fulfill the liability schedule under the

pre-specified solvency ability.

For the purpose of easy exposition, this paper introduces the stochastic interest
rate process suggested by Black, Derman, and Toy (1990) to examine the
immunization strategy for an insurance company. We calculate the company’s
surplus value and the first/second order sensitivity of the surplus value, and also
show that a profile of state contingent claims in this paper straightly decomposes a
profile of straight bonds, which was the immunization strategy suggested by Tzeng,
Wang, and Soo (2000). Further, if a firm’s objective is to maximize its convexity of
the surplus value subject to non-anticipated strategy condition, solvency ability, its
first order zero sensitivity, and its budget constraint, this paper demonstrates that
this optimal immunization strategy within a profile of state contingent claims can
be implemented by the multi-period scenarios-based programming model (Chiu
and Lee, 2007). Moreover, we show that the cost/benefit of hedging strategy via an
optimal immunization strategy only reflects the value change for the economic
environmental movements in the market with all the state contingent claims

needed.

The paper is organized as follows. Section 2 describes the economic settings
of the environment and the model. Section 3 provides a numerical example of a
hypothetical insurance company to demonstrate its corresponding hedging strategy.

Section 4 concludes.

Il. THE MODEL
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Assume that the market current term/volatility structure is well observed both
on the asset return and the liability return, and these settings can be described by
the binomial interest rate tree model suggested by Black, Derman, and Toy (1990),
so called the ‘binomial BDT tree model’. In practice, for example, the market
current term structure of asset return is estimated by the term structure of treasury
bond market plus the proper term structure of credit spread for its corresponding
asset portfolio in the corporate bond market. The volatility structure of asset return
could also be estimated from the market asset returns. Similarly, it is in the same
way for those of liability return, except that with no explicit market information,
hence it further requires some kinds of subjective judgments. Accordingly, assume
that the market current term structure of asset/liability return can be expressed as
follows:

Ya(t) =Ea-Faexp(-Ga-1) (1)
where Y 4 is the continuously compounded yield for the asset return, t is the time to
maturity, and E,, F, and G, are constants, and,

Yi(t) =EL-FLexp(-GL - 1) (2)
where Y is the continuously compounded yield for the liability return, t is the time
to maturity, and E;, Fi, and G are constants. The parameter G represents a growth
rate, the parameter F represents a scaling factor to control the initial slope of the
market current term structure, and the parameter E represents the parallel shift of
the market term structure of asset/liability return, which is consistent with the
market current asset/liability return level. On the binomial BDT tree, the short rate
volatility of In r(t)1 (for the purpose of easy exposition, it is not yield volatility as
suggested in original paper of Black, Derman, and Toy (1990) ), o, depends on the
time interval At and is equal to (1 /[2*sqrt(At)]) - In (r¥ / 1), where 1V is the
upward interest rate and r” is the downward interest rate. Assume that the volatility
structure of asset/liability return can be expressed as

[61, G2, 63, ..., ON]a 3)
where o; is the spot ith period volatility for the asset return, and,

[61, 62, 63, ..., ON]L “4)

where o; is the spot ith period volatility for the liability return. By these

' In the paper of Jamshidian (1991), the limit version of BDT can express as r(t) = pu(t) exp (c(t)W(t)),
where r(t) is a short rate, p(t) and o(t) are all deterministic processes, and W(t) is a standard Wiener
process.
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assumptions mentioned above, this paper calibrates the binomial BDT tree both on
the asset and the liability side. Thus, the asset and the liability continuously

compounded period returns have been fully constructed.

With considering the surplus immunization, especially with respect to the
market current interest rate level r, we assume that there is a linear relationship
between the market current asset/liability return level (ra, r) and the market
current interest rate level r (e.q. ra =1y + Ca - 1; 1 = I + Cp - ). That is: the change
in the market current interest rate level have different effect on the spot rate of the
asset return and the spot rate of the liability return, respectively; i.e. dra / dr = Cy
and dry / dr = C, where r, is the market current asset continuously compounded
return level, rp is the market current liability continuously compounded return level,

Ca and Cy. are constants (the same settings as Tzeng, Wang, and Soo, 2000).

The followings demonstrate the reasonable state contingent claims embedded
in the binomial BDT tree. For the purpose of easy exposition, we take a four-period
binomial BDT tree of asset return with one year per period, as an example, to show
the reasonable number of state contingent claims. There are 16 kinds of paths in
this BDT tree, denoted by the notations of ®;, ®,, ... , ®s, Where each “scenario i”
w; represents the ith path of BDT tree. And, this BDT tree generates 47 state
contingent claims, that is 1+2+4+8+16+16 = 47 state contingent claims”. In general,
we can provide the general form of the number of state contingent claims with
respect to the number of period n in a n-period binomial interest rate model. The
general form is ZLO 2k +2" . For each kind of state contingent claim, we define

its corresponding state of BDT tree as follows:
Time 0, {[o1, @, ..., ®¢](state 1)};

Time 1, {[o1, @, ..., ©g](state 2), [wg, D10, ... , ®is](state 3)};
Time 2, {[o1, 0, ... , 04](state 4), [®s, g, ... , ®g](state 5),
[09, @10, ... , ®12](state 6), [®13, Oy, ... , O6](state 7)};

Time 3, {[w1, o, ](state 8), [w3, w4](state 9), [®s, we](state 10),
[@7, wg](state 11), [mq, w1o](state 12), [w11, w12](state 13),
[@13, @4](state 14), [w1s, i](state 15)};

Time 4, {[w](state 16), [w,](state 17), [m;](state 18),

> We show a visual relationship between path scenarios and their corresponding state contingent
claims of BDT tree model in Appendix.
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[@4](state 19), [os](state 20), [we](state 21),

[@7](state 22), [og](state 23), [wo](state 24),

[m1o](state 25), [@1](state 26), [w;](state 27),

[o13](state 28), [m14](state 29), [w;s](state 30), [mg](state 31)};
Time 5, {[w](state 32), [w,](state 33), [m3](state 34),

[m4](state 35), [ms](state 36), [we](state 37),

[m7](state 38), [mg](state 39), [wo](state 40),

[omo](state 41), [w](state 42), [ow2](state 43),

[m3](state 44), [014](state 45), [w;s](state 46), [¢](state 47)};  (5)

Take “time 0, state 1 for example, due to the initial point of the binomial BDT tree,
all paths pass through state 1. Path 9 -- 16 pass through state 3 which represents the
interest rate going up one year later, meanwhile path 1 -- 8 pass through state 2
which represents the interest rate going down one year later. Hence, in this way,
each state represents one kind of path for the interest rate going (e.g. up-down-up

path, state 13).

Furthermore, each state, say state i, could have its corresponding state
contingent claim, say the state i contingent claim, whose state price is denoted by
SP;. According to the modern financial theory, each state contingent claim, say the
state 13 contingent claim, could be evaluated by

E( PV(w) 1 state 131(@) ) = Z PV(®) - p(w), we {state 13} (6)
where Q is the risk neutral probability measure, PV(w) is the discount factor along
with the path o, 1, is the indicator function, and p(®) is the occurance probability
of the path w. Therefore, there are 47 kinds of state contingent claims embedded in
this binomial BDT tree. And, we cosider the surplus management of an insurance
company in the market with all the state contingent claims needed, (i.e. one could

long/short a profile of state contingent claims).

The surplus value, E, is set equal to the asset value, A, minus the liability value,
L. Assume that
A= A(i) SP;, for all state i, (7)

where A(i) is the asset amount investing in the state i contingent claim, and SP; is

the value of this kind of security,
L= Y L(i)P(), for all period i, (8)
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where L(i) is the liability amount investing in the period i zero bond, and P(i) is the
value of this bond. These settings are the same as Tzeng, Wang, and Soo (2000)
except that we decompose the zero straight bonds on the asset side into several
state contingent claims. Hence, under the liability schedule L(0), L(1),..., L(5), the

corresponding surplus value function would be
E= Y. A®)SP— Y. L(i)P(). 9)
Within the framework of Tzeng, Wang, and Soo (2000), the objective function

for immunization is to maximize,
D A®@)d*SP, 01 — D L()d*P(i)/ dr? (10)
subject to
1.) the budget constraint of the asset value,
> AG@)SP = E + L, (11)
2.) the first oder zero sensitivity with respect to the market current interest rate
level,
> AG)ISP/dr = Y L([OP>Q) dr, (12)
3.) the second order positive sensitivity with respect to the market current interest
rate level,
> A@DO’SPar? = Y. L)’ P(i) 01’ (13)
4.) the solvency ability,

Cash amount is larger than the minimum solvency margin K as time goes by.

5.) the non-negative strategy,

A(1)=0, for all state i, (14)

This solvency ability constraint is tedious but straight, take “time3, state 13” of the
four-period binomial BDT tree as an example. This state is corresponding to the
up-down-up path (i.e. ro-r;"-r,°-r3"), and, along with this path, net cash flow at time
0 is A(1)-L(0), at time 1 is A(3)-L(1), at time 2 is A(6)-L(2), and at time 3 is
A(13)-L(3). And, all net cash flows are carried on into the time-state of “time 3,
state 13” , and are required to be larger than the minimum solvency margin K. By

this path, its constraint would be
([AQHLO) - (1 +1)+AGHL(D)] - () +AGMLQ) - (HrH+AIILB)ZK  (19)

However, we need some kind of operatonal definition of these constraints within
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this optimization framework. Fortunately, the local property of interest rate shows
that [(1+1o), (1+r,"), (1+ r,%)] is equal to [1/2 - SPi/SP;3, 1/2 - SP3/SPg, 1/2 - SP¢/SP3].

Hence, equation (15) can be rewritten as follows:
1/2(1/2[172(A(1)-L(0))SP/SP5+A(3)-L(1)]SPy/SPs+A(6)-1(2))SP¢/SP 15 +A(13)-L(3) =K, (16)

In this way, one could write down all constraints of the solvency ability and
complete the whole settings of the optimization framework. Especially, equations
(10)--(13) and (16) are all linear functions with respect to A(i). Hence, the linear

programming can slove this problem.

In effect, one can define the state contingent claims as the straight zero bonds,
then equations (7)--(14) would be the same settings as those of Tzeng, Wang, and
Soo (2000). However, in this case, these settings are not for a complete
path-immunization strategy. To solve this problem, this paper decomposes these
straight zero bonds into several state contingent claims and hence immunizes by
path for the surplus value of the insurance company. According the four-period
binomial BDT tree through the pricing formula, e.g. equation (6), one can rewrite

equation (7) as follows:
5 16
DD P@) A(o) PV, (17)

subject to so «called the “non-anticipating strategy” constraint. The
“non-anticipating strategy” constraint is that: the strategy amount is the same as in
the same information set, which is described by equation (5) (see also, Chiu and
Lee, 2007). In this case, we write the “non-anticipating strategy” constraint as

follows:

A()((D]) = .. -:AO((D16);

Ai(o1) = ... = Ay(wg); Al(®9) = ... = Ai(w16);
Az((i)l) = ... :Az((l)4); Az((,05) = ... :Az(&)g);
Az((i)()) = ... :Az((l)lz); A2(0)13) = ... :Az((})15);

Asz(01) = As(02); As(@3) =A3(04); As(®s) =A3(06); As(w7) =As(ws);
As(@9) = Asz(@10); As(@11) = As(012); As(013) = As(014); As(015) = As(wie),  (18)
where Aj(;) is the asset amount allocated on path ; at the jth period, and PVj(w;)

is the discount factor on path ; at the jth period. Hence, under the liability
schedule L(0), L(1), ..., L(5), surplus value function can be rewritten as follows:
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16 N5 5 o oy
E=>" ijo p(®) Aiw;) PVi(e) — ijo L() PG). (19)
Thus, with the “non-anticipated strategy” constraint, equation (10) will be
16 N5 5 . .
zizlzjzo p(e) Af@)d> PViw),/ dr’—) _, L(a* PG or?  (20)
Similarly, equations (11) -- (13) are
16 N5
DD, P@) Afe) PVi(o) = E+L, 1)

and
> p(e) A(@)OPVi@) dr = 31 L(OPG)/ O (22)

and
16 5 5 . .

Zi=lzj=o p(e;) Aj(0)d2 PVi(wy),/ dr? = ZJ_:O L(G§)02PG),/dr> (23)
If the path-by-path immunization is matter, and the left hand side of equations (21)
-- (23) is on asset-path separately, one could consider the path-version constraints
as follows:

Z;O Af(®) PVi(w) = E+L, for all o, (24)

and

zsj:() Aj(w)0PVi(wy),/ Or = Zsj:o LG)OP(),/ Or, for all (25)

and

ZS,-ZO Af(@) 0> PVi(wy),/ Ot gzsjzo LG)0%PG),/ 013 forall o,  (26)

Finally, consider the solvency constraint. Again, take the interest rate
up-down-up path (i.e. ro-r;"-r,"-r;" ) as an example. Along with this path, say o,
PVy(w) is 1; PVi(o) is 1/(1+1y); PVa(®) is 1/(1+1p) - 1/(1+1,"); PV3(w) is 1/(1+1g) -
1/(141,") - 1/(141,%). Accordingly, [PVo(®)/PVi(w), PV (0)/PV;(®), PV,(0)/PV;(0)]
is equal to [(1+ o) * (14 11") + (14 12%), (14 1,%) - (1+ 12%), (14 1.Y)]. One could rewrite

equation (14) as follows:

(Ao(@)-L(0)PVo(0)/ PV3(0)HA1(®)-L(1))PV (@) PV3(0)+(Ax(0)-L(2))PV (@)
PVi(@)HAs(w)-L3) = K 27

Therefore, these settings, equations (18), (20), (24)--(27) plus non-negative Aj(w;)
strategy, are the same settings as the “multi-period scenarios-based programming
model” suggested by Chiu and Lee (2007). Hence, this paper actually provides the
solid economic meaning of the “multi-period scenarios-based programming

strategy”’, which in essence is a profile of state contigent claims.
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Next section, we will take a numerical example to implement an optimal
immunization strategy via the “multi-period scenarios-based programming model”,
but explain the corresponding hedging strategy from this new point of view — a
profile of state contingent claims, not by the path-by-path scenario point of view as
did by Chiu and Lee (2007). Furthermore, we add the impact of volatility structure
on the surplus value while Chiu and Lee (2007) did not illustrate these results.

. NUMERICAL EXAMPLE AND HEDGING
STRATEGY

The previous section illustrates the model of asset allocation within a state
contingent claim approach for the surplus management of an insurance company.
To implement this strategy, we construct a hypothetical insurance company. The
balance sheet for a hypothetical insurance company at current time is constructed
as shown in Table 1. Without loss of generality, we assume the liabily schedule of a
hypothetical insurance company as shown in Table 2 (see also, Tzeng, Wang, and
Soo, 2000).

Considering surplus immunization especially with respcet to the market
current interest rate level r, we assume that there is a linear relationship between
the market current asset/liability return level (r, r.) and the market current interest
rate level r (e.q. ra =15 + C5 - ;1. =1I_ + Cp - r). That is: the change in the market
current interest rate level have different effect on the spot rate of the asset return
and the spot rate of the liability return, respectively; i.e. dra / dr = C and dr / dr =
CL, where r4 is the market current asset continuously componded return level, 1y is
the market current liability continuously componded return level, C5 and C. are
constants (the same settings as Tzeng, Wang, and Soo, 2000). We assume that the

market current continuously compounded interest rate level r is equal to 5.1 %.

Table 1 Balance Sheet of a Hypothetical Insurance Company

Asset Liability Surplus

3,382,681 2,882,681 500,000
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Table 2 Liability Schedule of the Hypothetical Insurance Company

Periods Liabilities
1 591,500
2 633,700
3 677,400
4 723,500
5 775,800

Table 3 Economic Parameter Settings

The market current interest rate level r 51%

The market current asset/liability return level (given) ra 6.20% r. 5.1%
The intercept term of linear relationship Ia 0.01 I 0
The slope term of linear relationship Ca 1.02 CL 1
The parallel shift factor (given) Ea 7.06% EL 5.96%
The scaling factor Fa 0.01 Fo 0.01
The growth rate Ga 0.15 GL 0.15

Also assume that r, =0.01+1.02 - r and r. = r; i.e., [,=0.01, I;=0, C,=1.02, and
C.=1. Further assume that Ex=7.06 %, FA=0.01, G5=0.15, E;=5.96 %, F;=0.01,
G1=0.15, [6]A=[0.05, 0.05, 0.05, 0.05], and [c].=[0.05, 0.05, 0.05, 0.05], as shown
in Table 3. Finally, the minimum solvency margin K is assumed to be 100,000.

Here, we formally restate the immunization framework in our model settings as
follows (see also, Chiu and Lee, 2007):

Max D "D p@IAIOTPV(@)Or [~ | LIRG)/Or’ ]
Subject to

1.) the “non-anticipating strategy” constraint,

Ag(or) = ... =A(016);

A(o1) = ... = A(0g); Ail(wg) = ... = Aj(®16);
Ax(@1) = ... = Ax(04); Ax(@s) = ... = Ax(ws);
Ax(@9) = ... = Ax(012); Ax(@13) = ... = Ax(®16);

Az(m1) = Asz(02); Az(3) =A3(04); Az(ms) =Az(06); Az(m7) =Az(ws);
Az(09) = Az(m10); Az(@11) = Az(012); Asz(013) = Az(014); Asz(®15) = As(@16),

2.) the budget constraint of the asset value,
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Zj-:o Aj(o;) PVj(w;) = E+L, for all w;,

3.) the first oder zero sensitivity with respect to the market current interest rate
level,

Zlo A(@)dPVi(w),/ 01 = Zjo L(j)d P(),/ ar, for all a;,

4.) the second order positive sensitivity with respect to the market current
interest rate level,

37 A(0)87PV(w), or’ zzsjzo L(j)d2P(j),/ 82, for all o,

j=0

5.) the solvency ability,
k

D (A(@)LOPV(@)PVi(e) = K, for all i=12,..16,
j=0
k=1,2,3,4,5
6.) the non-negative strategy
Aj(0;)=0, for all ;, (28)

Equation (28) can be solved by the linear programming technique. The results of
the linear programming could be expressed as a profile of state contingent claims,

as shown in Table 4. That is, the hypothetical insurance company should long the

state contingent claims with stated positions. Then, this company could fulfill the

liability schedule (see Table 2) under pre-specified solvency ability (the minimum

solvency margin assumed to be 100,000). Most importantly, regardless the courses

5.

of interest rate level movements, the surplus value of the hypothetical insurance

company always increases along with each path of asset return, as shown in Table
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Table 4 Optimal Asset Allocation ( a profile of state contingent claims)

0 1 2 3 4 5
state price  amount | state price amount| state price amount | state price amount| state price amount | state price amount
SPs A(4) 0.049 722898| 0.046 1518658
0.104 542713 0.049 852166| 0.046 1389867
SP, A(2) 0221 0 0.049  399552| 0.046 1541251
0.470 0 0.104  845825| 0049  529236| 0.046 1412152
SPs A(5) 0.048  722835| 0.046 1560207
0.221 500835 0.103 6722 0.048  854114| 0.045 1429521
SP4 A(1) 0.048  395312| 0.045 1585608
0103 311741 (0048  527046| 0.045 1454602
1.000 1236548 SPs A(B) 0.048 722835 0045 1584463
0.103 144606 | (048  856155| 0.045 1451745
SP3 A(3) 0.220 0 0.048 391302| 0.045 1610179
0470 342999 0.103 453360 0048  525078| 0.044 1477143
SP; A7) 0.048 520952| 0.044 1631566
0220 305811 0.102 0 0.048 656504 | 0.044 1496763
0.047  201360| 0.044 1660524
0.102 294149 (0047  337410| 0.043 1525394
A(u) is the amount of state u contingent claim, SP, is state price of state u contingent claim
Table 5 Path immunization effect for a profile of state contingent claims
Secnario(w) -70 bps -50 bps -20 bps 20 bps 50 bps 70 bps
1 0.0174554% 0.0088841% 0.0014164% 0.0014105% 0.0087748% 0.0171549%
2 0.0182479% 0.0092848% 0.0014797% 0.0014718% 0.0091570% 0.0178976%
3 0.0212950% 0.0108271% 0.0017235% 0.0017119% 0.0106392% 0.0207797%
4 0.0222518% 0.0113107% 0.0017998% 0.0017859% 0.0110992% 0.0216733%
5 0.0278877% 0.0141680% 0.0022527% 0.0022339% 0.0138689% 0.0270673%
6 0.0288510% 0.0146548% 0.0023294% 0.0023083% 0.0143315% 0.0279658%
7 0.0325398% 0.0165208% 0.0026242% 0.0025981% 0.0161194% 0.0314401%
8 0.0337012% 0.0171072% 0.0027166% 0.0026876% 0.0166753% 0.0325191%
9 0.0357956% 0.0181780% 0.0028884% 0.0028619% 0.0177580% 0.0346434%
10 0.0367684% 0.0186694% 0.0029659% 0.0029370% 0.0182247% 0.0355496%
11 0.0404852% 0.0205492% 0.0032627% 0.0032287% 0.0200240% 0.0390455%
12 0.0416580% 0.0211413% 0.0033560% 0.0033191% 0.0205847% 0.0401337%
13 0.0464201% 0.0235537% 0.0037378% 0.0036965% 0.0229136% 0.0446653%
14 0.0476013% 0.0241499% 0.0038317% 0.0037874% 0.0234777% 0.0457598%
15 0.0519245% 0.0263349% 0.0041764% 0.0041256% 0.0255619% 0.0498066%
16 0.0533462% 0.0270521% 0.0042892% 0.0042348% 0.0262385% 0.0511184%

The number in the first row represents some basis points deviation from current interest
rate level. And, the value in the table represents the rate of change of surplus value for

the hypothetical insurance company.
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Table 6 Hedging Strategy While the Market Current Term Structure Changes

0 1 2 3 4 5 0 1 2 3 4 5
Parallel shift up (40 bps) Parallel shift down (40 bps)
A(4) (34) 53682 A(4) 34 (52782)
(21756) 3721 49997 21538 (3692) (49120)
A(2) (0) (7531) 55578 A(2) (0) 7471 (54605)
0 (15834) (3753) 51887 0 15629 3722 (50935)
©) A(3) (12275) 57028 ©) A(5) 38 (56014)
(6722) (8387) 53228 28813 (3819) (52237)
A1) (5402) (19038) 59182 | A1) (4791) 7749 (58083)
10487 (1719) (15126) 55378 10612 22805 3867 (54300)
A(6) (38) 58877 ( ) A(6) 38  (57814)
(26908) 3991 54938 26648 (3958) (53900)
AR) (0 20644 (8091) 61073 AR (O sosge 2023 (59923)
(4038) 57131 4002 (56003)
1304 A7) (19905) 62735 (1326) A(7) 19598 (61534)
(0) (15728) 58670 (0) 15456 (57494)
(10141) (26792) 65235 10101 26410 (63932)
4868 (22588) 61170 (4857) 22241 (59889)
Steepen up (40 bps) Flatten down (40 bps)
A(4) (51) 39716 A(4) 51  (39079)
(9342) 1891 37884 9309 (1889) (37236)
A2 0 (4182) 42201 A2 0 4175 (41483)
0 (7098) (2219) 40374 0 7045 2213 (39641)
©) A(d) (3217) 43713 ©) A(5) 57  (42957)
(6722) (1148) 41782 12467 (2011) (41011)
A1) (1864) (7360) 46541 | A1) (787) 4452 (45687)
5783 (4682) (5269) 44620 5835 10142 2363 (43746)
A(6) (57) 45005 (5835) A(6) 57  (44217)
(11815) 2095 42993 11783 (2093) (42190)
AB) (O (4627) 47878 AB) 0 4619 (46990)
11) (9380) (2454) 45877 400 9324 2447 (44969)
A(7) (9711) 49616 A(7) 9605 (48680)
(0)  (7418) 47499 0 7314 (46543)
(5340) (14009) 52893 5355 13885 (51836)
1896 (11694) 50793 (1918) 11571 (49711)

We demonstrate the hedging cost/benefit of the hypothetical insurance company

reflecting the change of economic environment in the market with all the state

contingent claims needed. In this paper, we further consider examples of the

market current term structure parallel shift up/down (i.e. the parallel shift up 40

basis points case, changing I, as 0.013737890; the parallel shift down 40 basis

points case, changing I, as 0.0062480852197), slop steepen/flatten (i.e. the steepen

40 basis points case, changing F, as 0.019625268; the flatten 40 basis points case,

changing F, as 0.0003386181555) and the market current volatility structure parallel

shift up/down (the parallel shift up 40 basis points case, changing [c]s as [0.0540,
0.0540, 0.0540, 0.0540, 0.0540]; the parallel shift down 40 basis points case,
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changing [c]a as [0.0460, 0.0460, 0.0460, 0.0460, 0.0460];), slop steepen/flatten (i.e.
the steepen 40 basis points case, changing [c]a as [0.0500, 0.0510, 0.0520, 0.0530,
0.0540]; the flatten 40 basis points, changing [6] as [0.0500, 0.0490, 0.0480, 0.0470,
0.0460] ). The other parameters in the example of changing situations are the same
as the original settings. Table 6 demonstrates the hedging strategy of the
hypothetical insurance company while the market current term structure changes
instantaneously. Positive numbers stand for long positions of the security, and
numbers in the parentheses stand for short positions of the security. Similarly,
while the volatility structure changes instantaneously, the hedging strategy of the
hypothetical insurance company are shown in Table 7. Again, positive numbers
stand for long positions of the security, and numbers in the parentheses stand for
short positions of the security. Furthermore, the hypothetical insurance company
could reach an optimal immunization with long/short hedging securities under the
new economic environment. One may wonder how much value should the
insurance company take to implement long and short the state contingent claims.
We define hedging cost as the present value of long positions of state contingent
claims minus the present value of short positions of state contingent claims. In
other words, if hedging cost is positive, it stands for cash outflow, meanwhile
hedging cost is negative, it stands for cash inflow, and hence, the hedging benefit.
Further, we define reallocation value as the present value of long positions of state
contingent claims plus the present value of short positions of state contingent
claims. These results about hedging cost/benefit and reallocation value are shown
in Table 8.
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Table 7 Hedging Strategy While the Market Volatility Structure Changes

0 1 2 3 4 5 0 1 2 3 4 5
Parallel shift up (40 bps) Parallel shift down (40 bps)
A(4) 7 (5412) A(4) (8) 5467
23862 9595 (14979) (23910) (9701) 15136
A(2) (0) (23707) (3894) A2) (0) 24010 3908
0 46183 (14051) (13513) 0 (46503) 14254 13625
©) A(d) (5731) (2486) ©) A(5) (3) 2484
(6722) 4175 (12355) 17414 (9993) 12435
A(1) 33754 (29605) (526) | A1) (38751) 4641 513
19651 19395 (19622) (10450 . (5467) 14580 10515
( ) A(6) 3 (570) A(6) (3) 565
(7336) 10240 (10769) 7378 (10300) 10821
AB) (0 sog (23029) 1442 AR (0 (16060) 25240 (1455)
(14714) (8812) 14871 8853
27068 A7) (24953) 3252 (27119) A(7) 25159 (3250)
(0)  (14341) (7297) (0) 14517 7330
14230 (47328) 5817 (14406) 7962 (5778)
20113 (36627) (4790) (20576) 37239 4855
Steepen up (40 bps) Flatten down (40 bps)
A(4) 9  (5687) A(4) (9) 5781
25677 17074 (22734) (25941) (17322) 23071
A(2) 0) (34037) (3527) A2) () 34744 3538
0 57709 (16895) (20626) 0 (58613) 17360 20876
©) A(5) (7129) (2490) ) A(5) 4) 2491
(6722) 10327 (19902) 20261 (17680) 20121
A1) 36702 (41848) 208 | A1) (43343) 35892 (323)
21297 25465 (24309) (17163) 21299 (13087) 18137 17354
( ) A(6) 4 (2036) A(6) (4) 2036
(48) 17778 (19766) 163  (17991) 19976
AB) (O sapgg (35904 794 AB) () w3574 36417  (819)
(18046) (16984) 18352 17167
22644 A(7) (24498) 2136 (22958) A(7) 24836 (2153)
(0)  (6278) (16003) (0) 6435 16167
20766 (58112) 5749 (20982) 59092 (5703)
30402 (39801) (12431) (31102) 40607 12659
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Table 8 Reallocation Assets and Cost/(Benefit) of the Hedging Strategy

Reallocation Hedging cost/benefit Reallocation Hedging cost/benefit
Term parallel shift up (40 bps) Term parallel shift down (40 bps)
72973 31676 76667 (32322)
2.16% 0.94% 2.27% -0.96%
Term steepen up (40 bps) Term flatten down (40 bps)
48130 27588 49442 (28150)
1.42% 0.82% 1.46% -0.83%
Volatility parallel shift up (40 bps) Volatility parallel shift down (40 bps)
75157 (140) 76199 141
2.22% 0.00% 2.25% 0.00%
Volatility steepen up (40 bps) Volatility flatten down (40 bps)
87591 (106) 89567 106
2.59% 0.00% 2.65% 0.00%

Percent value is compared to the planned asset value.

One could see the largest hedging cost is 0.94% of planned asset value and the
smallest hedging cost is 0.00% of planned asset value. Hence, When the economic
environment changes slightly, the hedging cost is very small. However, some
strategies are benefit, such as the largest benefit is 0.96% of planned asset value in

case of the market current term structure parallel shifting down 40 basis points.

V. CONCLUSION

This paper actually provides solid economic meanings of the “multi-period
scenarios-based programming strategy”, which in essence is a profile of state
contigent claims. In this paper, we have examined the immunization strategy for
the surplus management of a hypothetical insurance company within a profile of
state contingent claim approach. This hypothetical company could fulfill the
liability schedule under pre-specified solvency ability. Most importantly, regardless
the courses of interest rate level movements, the surplus value of the hypothetical

insurance company always increases along with each path of asset return.

From the new point of view — a profile of state contingent claims, this
immunization strategy actually decompose the “zero straight bond securities” as

suggested by Tzeng, Wang, and Soo (2000) into the “state contingent claims” for
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asset allocation. If a surplus manager could long/short securities in the market with
all the state contingent claims needed, he might obtain much more flexibility in the
surplus management for an insurance company. Even, he can achieve path

immunization for the surplus value in this market.

Furthermore, the hypothetical insurance company could reach an optimal
immunization with long/short hedging securities under the new economic
environment. Through the linear programming technique, the hypothetical
insurance company could have its corresponding hedging strategy dealing with the
change of the environment of the market current term/volatility structure. When the
economic environment changes slightly, the hedging cost is very small. And, one
can find that some strategies are benefits, not costs. We define two measures, such
as hedging cost/benefit and reallocation value, to deal with it. Moreover, the
numerical results show that the cost/benefit of hedging strategy via an optimal
immunization strategy only reflects the change in value due to change in the

market economy environment with all the state contingent claims needed.

Finally, with all the underlying state contingent claims, this paper illustrates
the impact of the change of the market current term/volatility structure of
asset/liability return on the surplus value, a way how to reallocate assets and a
hedging strategy for this insurance company. And hence, the practitioners can refer

our numerical implications for the surplus management.
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APPENDIX

We take a four-period binomial BDT tree of asset return with one year per
period as an example, to show reasonable number of state contingent claims. There
are 16 kinds of paths in this BDT tree, denoted by the notations of ®;, @y, ... , @y,
where each “scenario i” ; represents the ith path of BDT tree. We take “the
scenario 11, m;;” as an example to illustrate the concept of path. The “scenario 11,
11" represents a path of BDT tree as the up-down-up-down path. We can also

denote the “scenario 11, @, as the path of r,—r' —r! —r

- rf , where the
subscript denotes as the index of period and the superscript denotes as the up state
or the down state. In this notation, we can also see that total number of paths in a
four-period binomial BDT tree is 16, say, 1x2x2x2x2 = 16, due to the fact

that the only two states can occur in each period of BDT tree.

However, this BDT tree generates 47 state contingent claims, that is
1+2+4+8+16+16 = 47 state contingent claims. In general, we can provide the
general form of the number of state contingent claims with respect to the number of
periods n in a n-period binomial interest rate model. The general form is
Z::O pARSA . We take state 26 contingent claim as an example to illustrate the
relationship between the state 26 and the scenario 11 in the four-period binomial

BDT tree, and the payoff of state 26 contingent claim is shown as in Figure 1.

state 16 state 32 oot

state 17 state 33 vz

state 18 state 34 o3
state 19 state 35 wos

state 20 state 36 wgs

state 21 state 37 .

state 22 state 38 .

state 23 State 39 o8

state 24 state 40 wos

state 25 state 41 1

1s!a!e 26 state 42 oyt
state 27 state 43 orz

state 28 state 44 w3

state 29 state 45 iy

state 30 state 46 15

state 31 State 47 e

Figure 1 The payoff of the state 26 contingent claim
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In the state 1 of Figure 1, we can denote it as the information set {®;, @y, ... ,
16}. The state 3 as {®y, ®y0, ... , ®16}, the state 6 as {wy, @0, ... , @12}, the state 13
as {m;, @1}, the state 26 as {®,;}. The path goes through the state 1 — the state 3 —
the state 6 — state 13 — state 26 as to the corresponding path of “the scenario 11,
11”7, due to our definition of state as follows:

1. from the state 1 to the state 3 as the interest rate going up, also denoted by r, — 1" .

2. from the state 3 to the state 6 as the interest rate going down, also denoted by I," — I’2d

u

3. from the state 6 to the state 13 as the interest rate going up, also denoted by r2d -

4. from the state 13 to the state 26 as the interest rate going down, also denoted by I,' — rf .

Along with the definition of the state in this model, we can define the state 26
contingent claim whose payoff is illustrated by Figure 1. In this way, we can also
define the state 1 contingent claim -- the state 31 contingent claim. In addition, due
to the fact that one can determine the time 4 (the end of period 4) price of zero
straight bond with maturity at time 5 given the known interest rate at the end of the
last 4th period. We can extend to define the state at time 5, such as state 32 -- state
47 and its corresponding state contingent claims. Hence, this BDT tree generates

47 states and its corresponding state contingent claims.
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