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ABSTRACT

In this paper, we determine the optimal transfer batch sizes to minimize total batch flow-time when capacity
constraints exist on the transfer batch. A four step closed form procedure is developed and proved optimal.
Unlike the results of current research, which show that batch sizes decrease in batch order, we prove that, if
capacity constraints exist, the batch sizes are only non-increasing in batch order. This result supports the
approach taken by heuristic methods employed in lot splitting models which assumes equal batch sizes.

Keywords: optimal transfer gatch sizes, minimum total flow time.

[. INTRODUCTION

The determination of the transfer batch size has received increasing
attention with the growing practical concerns of industries to minimize
lead times (Smunt et al., 1996). Transfer batches can be obtained by
partitioning large orders into smaller batches to move all items more
quickly through the production system and then the work-in-process
inventory levels can be reduced. The fact is accordance with the just-in-
time (JIT) philosophy of making small batches and enhances the interest in
its application over the last few years (Chen and Steiner, 1997a, 1997h).
Literature in the area can be classified into two broad categories: 1) the
determination of optimal transfer batch sizes, and 2) the development of
heuristics for determining the transfer batch size. Lee and Chung (1998),
Dobson, Karmarkar and Rummel (DKR) (1989, 1987), Naddef and Santos
(1984), and Santos and Magazine (1985) have determined optimal transfer
batch sizes under varying conditions. The unique aspect of each of these
optimal models is that the batch size decreases in batch order in the closed
job shop environment.

Furthermore, lot splitting is the process of using transfer batches to
move completed portions of a production batch to downstream machines
for minimizing the makespan of the schedule and for lowering the work-in-
process inventory levels (or, the mean flow time) ( Kropp and Smunt 1990;
and Baker and Pyke 1990). Szendrovits (1978) formulates a multi-stage,
single job problem having equal transfer batches of given size. Under
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various problem settings, Graves and Kostreva (1987), Vickson and
Alfredsson (1992) and Steiner and Truscott (1993) find the optimal lot
splitting schedules. Using simulation experiments, Jacobs and Bragg
(1988) and Smunt et al. (1996) obtain some results about the performance
of the lot splitting decisions respectively. Kropp and Smunt (1990) and
Baker and Pyke (1990) developed heuristics utilizing the simplifying
assumption that the transfer batch sizes are equal. However, all the
studies of the above lot splitting problems assume the same condition of
equal batch sizes in their complex models. In this paper, we prove that
the optimal transfer batch sizes can be equal when there is capacity
constraints on the transfer batch in a closed job shop. In addition, a four
step closed form procedure is developed to determine the optimal number
of batches and their optimal size. The procedure is proved to be optimal
and it can be incorporated into existing heuristic methods to improve
performance of the production system.

The problem formulation and the conditions for optimality are
discussed in Section 2 of the paper. In Section 3, a closed form solution
procedure is developed and proved to be optimal. An implementation
example is given in Section 4. Section 5 contains possible extensions of
the work including incorporating the procedure into existing heuristics.

Il. PROBLEM FORMULATION AND CONDITIONS OF
OPTIMALITY

To formulate the batch-flow problem with capacity constraints, we
follow DKR in assuming that the following are known and fixed:

d = the number of units to be processed,

s = the setup time for each batch,

r = the processing rate of the machine,

K = capacity limit of the transfer batch,

Likewise, the following decision variables are defined:

n = the number of batches to be run on the machine,

gi = the quantity produced in theith batch, i = 1,2, ..., n.

The generalized batch-flow problem (P) is given by:

n i
(P) Minimize > > (sq, +qkqi/r) (1)

i=1k=1
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n

Subject to z g =d, (2
1 =1

g <K,i=1,2K n, 3)

g 20,i=1,2K n. (4)

By eliminating constraint (3), problem (P) reduces to the (BF1) problem
discussed by DKR (1987). Like problem BF1, problem ( P ) is a convex

programming problem and the properties of the optimal solution can be derived by
using the Karush-Kuhn-Tucker conditions. In the following lemmas n" = |

represents the optimal number of batches and q? represents the optimal size of
the i"" batch.
Lemma 1. q? isnonincreasing in i.

Proof. See Appendix.
Lemma?2. Problem (P) isequivalent to problem (P1) where P1is given by:

n i
(P1) Minimize » > (sq, +q, 0, /T) ()
i=1 k=1
n
Subjectto )’ g=d, (6)
i=1
g <K,i=1,2K n, (7)
g >0,i=1,2K ,n. (8)
Pr oof. See Appendix.

Lemma 3, Inthe optimal solution of problem (P1), if q? is not the last batch
. * * *

sizeand q; < K, theng; =q;  ,+9 .

Proof. See Appendix.

Lemma 4. For problem (P1), iqu is the quantity of the last batch in the
optimal solution, then 0< qT < min{K, sr}.

Proof. See Appendix.
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Discussion:

According to Lemma 1, the optimal batch size is nonincreasing in batch order.
This result is a refinement of current approaches which conclude that the optimal
batch size is decreasing in batch order. If the first batch obtained by DKR's
closed form solution is greater than the upper bound of each batch, then there are |

batches in the optimal solution such that qf =K ,j=1,.., h and q, is strictly
j

decreasing ini, wherei =h+1, ..., | .

Lemma 5. If q:]:K and q::+1<K, then qt]—q::” <s and

q =K fori=12..h.

|
Proof. See Appendix.
Corollary 1. If K= oo, problem (P) reducesto problem BF1 .

Proof. See Appendix.

[ll. THE SOLUTION PROCEDURE

In this section, a solution procedure is developed that satisfies the conditions
of optimality expressed in Lemmas 1 through 5. Later, we will prove the

procedure to be optimal.

Stepl. If K< s, thenthe optima number of batches is given by n :[%w )

and theoptimal size of each batch isfound by:

+_|K fori=12,...,n -1
" ld—(n" DK fori=n".

If K> sr, goto Step 2.

sr(n —1)
2d 11. If K2£++ then the

n
1

Step 2. Let n,:{ i—+— :
Sr

optimal number of batches is given by n* = n1 , and the optimal size of

each batch is given by:

q =d/n +s(n +1)/2-i(sr), fori=L..n .
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d s(n -1)
If K<—+—1— gotoStep3.
n 2

, (n, +1)sr d ,
Step 3. n Let n :LKJ,d :L,andn = M . If d—=d —n K=0,
1| s 2 2 K 2

then the optima number of batches is given by n* :nl +n2, and the

optimal size of each batch is given by:

q

*

. K fori=1,2,...,n ,
_ 2
- (n* —i+1)sr fori:n2+1,...,n .

If d—d -n K >0, gotoStep4.

d—d -n K

2

Step 4. Let e = K—-msr and u=
n1+1

.If u<e, then the optimal

number of batches is given by n* :nl +n2 +1, and the optimal batch

sizeisgiven by:

K for i :1,2,...,n2,

*

g = * . . *
i (n —i)sr+u for|:n2+1,...,n )

If u > e then the optima number of batches is given by
n =N +n_+1, and the optimal baich size s given by:

K fori=12,...,n ,
* 2
*

= * . * .
i (n —i)sr+q , for|:n2+1,...,n ,
n

q

where q**:ni— 12 S 2n K.
n 1 1

Theorem 1. The above 4 step procedure provides an optimal solution for
problem P .
Proof. See Appendix.
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IV. AN EXAMPLE

This example includes five problems.  For each problem, d = 150, s =5, and
r = 3, where d, s, and r denote the values for demand, setup time, and processing
rate. Problems 1 through 5 have capacity constraints on the transfer batch of 12,
60, 35, 42, 32 respectively.
Problem 1: K=12
Stepl. Since sr=15> K=12, theoptimal solutionis

w4 ={@1=13,
K | 112

* 12 for i
6 for i

1,2, .., 12,
13 .

Problem 2: K = 60
Stepl. Sincesr = 15< K = 60, go to Step 2.

*
Step2. Let n,= l+§—l = l+2 150_1 =4. Since
PV4 s 2 4 5*3 2

K>150/4+15* 3/2=60, the optima number of batches is

n =n =4. Theoptimal baich sizeis
o =150/4+15%5/2-i(15)=75-15i,  fori=1,..,4.
Problem 3: K= 35

Step1l. Sincesr = 15 < K= 35, goto Step 2.

Step 2. Let nlz[ i+§—ﬂ:4. SinceK = 35< 60, go to Step 3.
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‘ n +1)S|’ 2% 3% 15
Step 3. Let n1=£=2, d =1 = =45,
sr 2 2
and n= d-d :{MJ:& Since
2 K 35

d-d - n K =150-45-3*35=0, the optima number of batches

is

N =2+3=5, andtheoptimal baich sizeis

« 35 fori=1,2,3,
4 = (6-1)*15 fori=4,5.

Problem 4: K= 42
Stepl. Sincesr = 15<K =42, go to Step 2.

Step2. Let n = l+§—l =4..SinceK =42 < 60, go to Step 3.
1 4 o 2
K ' nm +1)sr 2% 3% 15
Step 3. Let n =|—|=2, d=— = =45,
1 s 2 2

n {d‘d J:FS&“F’J:z. Since d—d —n K=150-45-2*42=21>0,
2 | K 42 2

go to Step 4.

Step4d. Lete= K—mysr=42-2* 15=12and uzd‘d _”2K=15M5—2*42=7 _

n1 +1 2+1

Since u=7<e=12, the optima number of baiches is

n* :n1 +n2 +1=5, andthe optimal batch sizeis

q

x  [42 fori=1,2,
| (5-i)*15+7 fori=3,4,5.

Problem 5: K= 32
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Stepl. Sincesr = 15<R= 32, goto Step 2.

Step 2. Let nI: I%+§—ﬂ:4. Since K = 32 < 60, go to Step3.
s

‘ n o +1)S|’ 2% 3% 15
Step3. Let n,= 5J:Z, d=-11 = =45, and
B 2 2
] :[d—d' :[150—45J:3. Since
2 K 32

d—d ~n, K=150-45-3*32=9>0, goto Step 4.

d-d -nK .
Step4. Lete= K—nsr=32-215=2and - 2 _156-45-3"32

n1 +1 2+1

Since u=3> e=2, the optimad number of batches is

n* :nl +n2 +1=6, andthe optimal batch sizeis

x [32 fori=1,2,3,4,
% T1(6-1)*15+35 fori=5,6
n -1 n +1 _
where o =30 g2 130 2715 3tlgy 55

nono2 nooo2 2

V. SUMMARY AND CONCLUSIONS

In this paper, we derived the conditions for the determination of the optimal
transfer batch size to minimize total flow-time when there is capacity constraints
on the transfer batch. The closed form procedure developed is easily applied.
Furthermore, the procedure can be incorporated into current heuristics of the
batching problems or the lot splitting problems. The four step procedure can
replace steps 2, 3a, 3b and 4 of algorithm A reported by Baker and Pyke [1, pp.
482 . This heuristic algorithm first finds that machine with the largest processing
time. This is equivalent to the processing time used in our closed form procedure.
For an m machine problem, if a better lower bound with respect to the objective
function is constructed, then the procedure discussed in Section 3 can be applied to
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each heuristic of the previous research results (Lee and Chung, 1998; and DKR
1989, 1987). Although the lower bound of each previous research is still useful
for each situation, the analysis of each optimal solution shows that it is possible to
develop a better lower bound for each case as capacity constraints exist on the
transfer batch. The performance of the modified heuristics will be compared with
the better lower bound and the efficiency of this approach will be investigated in
future research.
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APPENDIX

Proof of Lemma 1. The proof of Lemma 1 is by contradiction. Suppose there
*

are two batches q? and q in the optimal solution such that qTH > qT .

i+1
The optimal solution can be improved by exchanging the order of these two
batches to build another batch sequence. Without loss of generality, assume that

the i" batch starts at time t,_,. By letting FT1 and FT2 denote the batch-flow

time of the first batching sequence and the second batching sequence respectively,
the difference between the above flow times only occurs at the i batch and the
(i+1)™" batch.

The following expression can be obtained:

*

*
FT1-FT2= (q—'+ S+ ti_l)q’; +(M+ s+q—'+ S+ ti.l)q’; 1
r r r

*

'[(%"'S"' ti—l)q?+l +(qir+1+s+qTi+S+ tia) QT]
=S0i 41734
=s(dj 4y -G ):

Since q?H > q’; , the above difference is positive. This implies that
FT1 is greater than FT2 which contradicts the assumption of FT1 being optimal.
Consequently, q’ik > q? r1-

Proof of Lemma 2. From Lemma 1, the optimal batch size is nonincreasing in
batch order. Note that if the batch size is zero, the flow time is aso zero. By
eliminating the condition, g = 0, the optimal solution of problem (P) can be
obtained by solving problem (P1).
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Proof of Lemma 3. Since problem (P) is a convex programming problem, it can
be restated as:

n i
(P) Minimize > > (sq, +qkqi/r) (1)
i=1k=1
n
Subjectto ' g-d=0, t A )
i=1
g - K <0, e JA=1,2K ,n, (3)
q- ZO, 7/| i:1!21K lnl (4)

whereA ,;, an g are Lagrangian multipliers. The first order conditions
|

are:

si+—'+9—/1 +u. —y. =0,
rr bl

(ql - K)/Ji =0,

A 20,,ui ZO,andy/i >0,i=1,2K ,n.

From Lemma 1 and q? <K, it is obvious that for
optimality,,ui =0, Y, =0 and
q’; =Ar—d-i(sr). Hence q?=q?+1+sr.

Proof of Lemma 4. Two relationships exist between K and sr . IfK < s,
then qT <K is necessary to satisfy constraint (7). If K > sr, the following

relations are obtained from

Lemma3: qT =Ar-d —,ulr—l(sr),
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A, =0=Ar=d -y r=(+1)(s),

whichyields g =sr —u Ty T

I +1

Because of the nonnegativity restrictions on x, an gatl L e 0 and
+

qT < s results. Hence, O<q’|c < min{K, s} .

Proof of Lemma 5  Lemma 5 is proved by contradiction. Assume

* *
CL —cL 1>sr results in a flow time (FT1) . Then there exists a & > 1 such that
N

qT] = K—-dsr. By setting 5 :T, we can move & pieces from
.

the h™ batch to the (h+1)™ batch to build a second sequence with a flow time (FT2) .
Without loss of generality, assume the h'" batch starts at timet,;.  The difference
between FT1 and FT2 is:

FT1-FT2=

* *
q, tSr+D s 2q,, ,+Sr+20 s

+s+th)(qt+l+sr+26'sr)+( +2s+th)q’;+l]

[¢

q*+ +Sr+0 s
_[( h+1

* ' 2q,, tSr+D s * '
+s+t,)(q, , TS +O ) +H(— . +2s+t,)(q,, ,+0 7))

=(5)2sr.

Because(d )2, s> andr areall positive, the difference, FT1-FT2, is greater
*

*
than zero which contradicts the assumption. Hence, qh - qh | <s.
+

Proof of Corollary 1. The proof is quickly shown by noting that if K = o, the
transfer batch does not have capacity constraints. Consequently, constraint 3 is
eliminated in problem (P), which is then equivalent to problem BF1.

Proof of Theorem 1. Three relationships exist between sr, K and q; that
determine the optimal number of batchs and the batch sizes. These relationships
are:

(D) If K <sr, then only one feasible solution satisfies Lemmas 1 through 4.

Thissolutionisfound in Step 1.
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2 If K> s and ql <K, then the second relation exists which is

equivalent to problem BF1 of DKR. The solution procedure is the same as
that obtained by DKR and is Step 2 of the procedure.
3 If K> o and q1 > K, Steps 3 and 4 find the unique optimal solution.

By applying the results of Lemmas 1 through 5, three different cases are

checked in Steps 3 and 4. After alocating the quantity d' to n1 batches

such that q < K, the quantity of the remaining work, d -d , is alocated
I

to the first n2 batches such that qi =K,i=1,2K ,nz. Define e as the

difference  between ¢ landq =K. For the first case Iif
n,+ n,

d—d'—nzK:O, then the optimal solution is found in Step 3. If

d—d' —n2 K> 0, then the remaining work is realocated to the last n,

batches, increasing the number of batches by one. Since u is the average
remaining work, if u<e, theoptimal solutionisfoundin Step 4. If u>

e, then q. > K. Inthis case, e pieces of work are first alocated to the t
2
(n2+:I)th batch such that q. ,,=K. The remaining work then equals
2

d—d'—n2 K-e anditisallocatedtothelast n,—1 batches. Thisincreases

d-d —n,K-e
n

the number of batches by one. After adding to the

last n, batches, the optimal solution is obtained in Step 4.

(capacity constraints) (transfer batch)
(total batch flow-time)
(closed form procedure)

( )

John J. Bernardo
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(lot
splitting model) ( )



